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INVARIANTS OF HYPERBOLIC EQUATIONS:

SOLUTION OF THE LAPLACE PROBLEM

UDC 517.91N. Kh. Ibragimov

This paper gives a solution of the Laplace problem, which consists of finding all invariants of the
hyperbolic equations and constructing a basis of the invariants. Three new invariants of the first and
second orders are found, and invariant-differentiation operators are constructed. It is shown that the
new invariants, together with the two invariants detected by Ovsyannikov, form a basis such that any
invariant of any order is a function of the basis invariants and their invariant derivatives.

Key words: Laplace invariants, integration of hyperbolic equations, equivalence transformations,
semi-invariants.

Introduction. The famous Laplace invariants h and k appeared for the first time in Laplace’s paper
(1773) on the theory of integration of linear hyperbolic differential equations with two independent variables. It is
more proper, however, to call the quantities h and k semi-invariant because they are invariant only under a linear
substitution of a dependent variable.

In his fundamental paper [1] on the integration of linear hyperbolic second-order partial differential equations
uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0

Laplace considered the following quantities:
h = ax + ab− c, k = by + ab− c.

The quantities h and k do not change under a linear transformation of the dependent variable u = ϕ(x, y)v and,
hence, were later called Laplace invariants. The term semi-invariant is more accurate [2] since h and k are invariant
only under a subgroup of the equivalence transformation group rather than the entire group. The term semi-
invariant for quantities that are invariant under subgroups was proposed by Laguerre [3] according to the general
theory of Cayley’s invariants. The question of the presence or absence of other invariants remained opened.

Nearly 200 years had passed before Ovsyannikov [4], studying the problem of group classification of hyperbolic
equations, found two true invariants

p =
k

h
, q =

1
h

∂2 ln |h|
∂x ∂y

,

which do not change under all equivalence transformations. At that time, the general approach to constructing
invariants of systems of equations with an infinite equivalence transformation group had not been developed, and,
hence, the problem of whether all invariants are exhausted by the quantities found remained open. Thus the following
problem arose (I call it the Laplace problem): to find all invariants of hyperbolic equations and to construct a basis
of the invariants.

A general method for constructing invariants of systems of linear and nonlinear equations using infinite
equivalence transformation groups was recently developed in [2] (see also [5]). This method was then applied to
several linear and nonlinear equations. In particular, applied to the parabolic equation

ut + a(t, x)uxx + b(t, x)ux + c(t, x)u = 0

this method yielded the following invariant [6]:

K = b2ax/2 + (at + aaxx − a2
x)b + (aax − ab)bx − abt − a2bxx + 2a2cx.
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In the present paper, we solve the Laplace problem of the invariants of hyperbolic equations. To construct
a basis of the invariants, one first computes all invariants up to the second order, inclusive, and then finds the next
three new invariants:

I =
pxpy

h
, N =

1
px

∂

∂x
ln

∣∣∣px

h

∣∣∣, H =
1
py

∂

∂y
ln

∣∣∣py

h

∣∣∣.
After that, the general invariant-differentiation operator

D = F (p, I)
1
px

Dx + G(p, I)
1
py

Dy

is computed and it is proved that of the new invariants and Ovsyannikov invariants, it is possible construct a basis
of all invariants so that any invariant of any order is a function of the basis invariants and their invariant derivatives.

A detailed description of the method used below can be found in [2], and in [5, Sec. 10], where the method
is illustrated on examples of calculations of invariants of algebraic and ordinary differential equations.

1. Semi-Invariants. We consider hyperbolic equations with two independent variables x and y

uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0, (1)

where the subscripts denote partial derivatives (ux = ∂u/∂x, etc.).
An equivalence transformation of Eqs. (1) is a reversible transformation of the variables

x̄ = f(x, y, u), ȳ = g(x, y, u), ū = h(x, y, u)

under which Eq. (1) with any coefficients a, b, and c remains linear and homogeneous. In this case, generally
speaking, the transformed equation has new coefficients ā, b̄, and c̄.

The set of all equivalence transformations of Eqs. (1) is a infinite group consisting of a linear transformation
of the dependent variable

u = ϕ(x, y)v, ϕ(x, y) 6= 0 (2)

and the following reversible substitutions of the independent variables:

x̄ = f(x), ȳ = g(y), (3)

where f(x), g(y), and ϕ(x, y) are arbitrary functions and v(x̄, ȳ) is a new dependent variable. Two equations of the
form of (1) are called equivalent if they can be related to each other by an appropriate equivalence transformation
(2), (3).

Functions J = J(a, b, c, ax, ay, . . .) of the variables a, b, and c and their derivatives will be called semi-
invariants of Eq. (1) if these functions are invariant only under transformation (2). In this section, we find all
semi-invariants. The apparent semi-invariants x and y are not considered here.

We set ϕ(x, y) ≈ 1+ εσ(x, y), where ε is a small parameter and consider the infinitesimal transformation (2)

u ≈ [1 + εσ(x, y)]v.

Then, the corresponding infinitesimal transformation of the derivatives is given by

ux ≈ (1 + εσ)vx + εσxv, uy ≈ (1 + εσ)vy + εσyv, uxy ≈ (1 + εσ)vxy + εσyvx + εσxvy + εσxyv.

Therefore, we have

uxy + aux + buy + cu ≈ (1 + εσ)vxy + εσyvx + εσxvy + εσxyv

+ (1 + εσ)avx + εσxav + (1 + εσ)bvy + εσybv(1 + εσ)cv

and arrive at the infinitesimal transformation of Eq. (1):

vxy + (a + εσy)vx + (b + εσx)vy + [c + ε(σxy + aσx + bσy)]v = 0.

From this it is obvious that the coefficients of Eq. (1) are subjected to the infinitesimal transformation

ā ≈ a + εσy, b̄ ≈ b + εσx, c̄ ≈ c + ε(σxy + aσx + bσy)

and yield the following infinitesimal operator:

Z = σy
∂

∂a
+ σx

∂

∂b
+ (σxy + aσx + bσy)

∂

∂c
. (4)
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Let us first consider the problem of the existence of semi-invariants of the form J = J(a, b, c). The invariance
criterion of Z(J) = 0 under transformation (2) is written as

σy
∂J

∂a
+ σx

∂J

∂b
+ (σxy + aσx + bσy)

∂J

∂c
= 0.

Since the function σ(x, y) is arbitrary, by equating the coefficients at σxy, σx, and σy to zero, this equation is split
into the following three equations:

∂J

∂c
= 0,

∂J

∂b
= 0,

∂J

∂a
= 0.

Hence, J = const, so that there are no invariants of the form of J = J(a, b, c) other than the apparent constant J .
Therefore, it is necessary to consider first-order differential invariants, i.e., functions of the form

J(a, b, c, ax, ay, bx, by, cx, cy). To find such invariants, one needs to use the extended operator (4)

Z = σy
∂

∂a
+ σx

∂

∂b
+ (σxy + aσx + bσy)

∂

∂c
+ σxy

∂

∂ax
+ σyy

∂

∂ay
+ σxx

∂

∂bx
+ σxy

∂

∂by

+ (σxxy + aσxx + axσx + bσxy + bxσy)
∂

∂cx
+ (σxyy + aσxy + ayσx + bσyy + byσy)

∂

∂cy

and solve the equation
ZJ(a, b, c, ax, ay, bx, by, cx, cy) = 0.

In this equation, the vanishing of the first coefficients at σxxy and σxyy and then at σxx and σyy yields the
following four equations:

∂J

∂cx
= 0,

∂J

∂cy
= 0,

∂J

∂bx
= 0,

∂J

∂ay
= 0,

whence it follows that J = J(a, b, c, ax, by). Now, the vanishing of the coefficients at σxy, σx, σy yields the following
system of three equations:

∂J

∂c
+

∂J

∂ax
+

∂J

∂by
= 0,

∂J

∂b
+ a

∂J

∂c
= 0,

∂J

∂a
+ b

∂J

∂c
= 0.

The last two equations of this system yield J = J(λ, ax, by), where λ = ab− c. Then, the first equation becomes

∂J

∂ax
+

∂J

∂by
− ∂J

∂λ
= 0.

This equation has two independent solutions:

J1 = ax − by, J2 = ax + λ ≡ ax + ab− c.

Using the notation h = J2 and k = J2−J1, we obtain two functionally independent semi-invariants, namely Laplace
invariants:

h = ax + ab− c, k = by + ab− c. (5)

Lemma 1. Semi-invariants depending on the higher derivatives of a, b, and c are functions of the Laplace
invariants (5) and their derivatives of any order with respect to x and y.

Lemma 1 is proved by comparing the number of invariants obtained by differentiation of the Laplace invari-
ants (5) with the difference between the number of derivatives of the corresponding order of the functions a, b, and
c and the number of derivatives of the same order of the function σ.

2. Second-Order Invariants. A function J = J(x, y, a, b, c, ax, ay, . . .) of the variables x and y, the
coefficients a, b, and c, and their derivatives of any order is called an invariant of Eq. (1) if it does not change under
the general equivalence transformation (2), (3) of the dependent and independent variables. According to Lemma 1
proved above, to determine the most general invariant, it suffices to use functions of the form

J(x, y, h, k, hx, hy, kx, ky, hxx, hxy, hyy, kxx, kxy, kyy, . . .) (6)

and to subject them to the condition of invariance under transformations (3) of independent variables.
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The infinitesimal transformation (3) of the variable x has the form
x̄ ≈ x + εξ(x) (7)

and gives
ux ≈ (1 + εξ′)ux̄, uy = uȳ, uxy ≈ (1 + εξ′)ux̄ȳ,

where ξ′ = dξ(x)/dx. These formulas leads to the infinitesimal transformation of Eq. (1)
(1 + εξ′)ux̄ȳ + a(1 + εξ′)ux̄ + buȳ + cu = 0,

which one can be written, with accuracy up to the first order in ε, in the form of (1):

ux̄ȳ + aux̄ + (b− εξ′b)uȳ + (c− εξ′c)u = 0.

This leads to the following infinitesimal transformations of the coefficients of Eq. (1):

ā ≈ a, b̄ ≈ b− εξ′b, c̄ ≈ c− εξ′c. (8)

The infinitesimal transformations (7) and (8) define the operator

X = −ξ(x)
∂

∂x
+ ξ′b

∂

∂b
+ ξ′c

∂

∂c
. (9)

The extension of the operator (9) to ax and by has the form

X = −ξ(x)
∂

∂x
+ ξ′(x)

[
b

∂

∂b
+ c

∂

∂c
+ ax

∂

∂ax
+ by

∂

∂by

]
and specifies the following action on the Laplace invariants:

X = −ξ(x)
∂

∂x
+ ξ′(x)

[
h

∂

∂h
+ k

∂

∂k

]
. (10)

Here we wish to find all invariants (6) that depend on the derivatives of h and k up to the second order,
inclusive. Therefore, we calculate the second extension of the operator (10) using the general procedure and obtain

X = −ξ(x)
∂

∂x
+ ξ′h

∂

∂h
+ ξ′k

∂

∂k
+ (ξ′′h + 2ξ′hx)

∂

∂hx
+ (ξ′′k + 2ξ′kx)

∂

∂kx

+ ξ′hy
∂

∂hy
+ ξ′ky

∂

∂ky
+ (ξ′′′h + 3ξ′′hx + 3ξ′hxx)

∂

∂hxx
+ (ξ′′hy + 2ξ′hxy)

∂

∂hxy

+ ξ′hyy
∂

∂hyy
+ (ξ′′′k + 3ξ′′kx + 3ξ′kxx)

∂

∂kxx
+ (ξ′′ky + 2ξ′kxy)

∂

∂kxy
+ ξ′kyy

∂

∂kyy
.

Now, as in Sec. 1, we use the infinite-dimensional nature of the examined Lie algebra of operators, namely the fact
that the function ξ(x) and all its derivatives ξ′(x), ξ′′(x), and ξ′′′(x) are arbitrary. Therefore, the above extended
operator splits into the following four operators, obtained by separating the coefficients at different derivatives of
the function ξ(x):

Xξ =
∂

∂x
, Xξ′′′ = h

∂

∂hxx
+ k

∂

∂kxx
,

Xξ′ = h
∂

∂h
+ k

∂

∂k
+ 2hx

∂

∂hx
+ hy

∂

∂hy
+ 2kx

∂

∂kx
+ ky

∂

∂ky
+ 3hxx

∂

∂hxx

+ 2hxy
∂

∂hxy
+ hyy

∂

∂hyy
+ 3kxx

∂

∂kxx
+ 2kxy

∂

∂kxy
+ kyy

∂

∂kyy
,

(11)

Xξ′′ = h
∂

∂hx
+ k

∂

∂kx
+ 3hx

∂

∂hxx
+ hy

∂

∂hxy
+ 3kx

∂

∂kxx
+ ky

∂

∂kxy
.

Similarly, the infinitesimal transformation (3) of the variable y

ȳ ≈ y + εη(y)

leads to the operator

Y = −η(y)
∂

∂y
+ η′(y)

[
h

∂

∂h
+ k

∂

∂k

]
, (12)
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whose second extension splits into the following operators:

Yη =
∂

∂y
, Yη′′′ = h

∂

∂hyy
+ k

∂

∂kyy
,

Yη′ = h
∂

∂h
+ k

∂

∂k
+ hx

∂

∂hx
+ 2hy

∂

∂hy
+ kx

∂

∂kx
+ 2ky

∂

∂ky
+ hxx

∂

∂hxx

+ 2hxy
∂

∂hxy
+ 3hyy

∂

∂hyy
+ kxx

∂

∂kxx
+ 2kxy

∂

∂kxy
+ 3kyy

∂

∂kyy
, (13)

Yη′′ = h
∂

∂hy
+ k

∂

∂ky
+ hx

∂

∂hxy
+ 3hy

∂

∂hyy
+ kx

∂

∂kxy
+ 3ky

∂

∂kyy
.

From the conditions of invariance under translations along x and y [Xξ(J) = 0 and Yη(J) = 0], it follows
that J in (6) does not depend on x and y. In addition, from the form of the operators (13) it can be seen that both
equations

h = 0, k = 0 (14)

are invariant under (13). Below, we assume that h and k do not vanish simultaneously, for example, h 6= 0. The
equation Xξ′J = 0 for the function J(h, k) gives one of the Ovsyannikov invariants

p = k/h. (15)

It is easy to verify that the quantity p satisfies the invariance criterion for all operators (11) and (13). Next, from
the equations Xξ′′′(J) = 0 and Yη′′′(J) = 0, it follows that hxx, hyy, kxx, and kyy can appear in the second-order
invariants (6) only in the following combinations:

r = kxx − p hxx, s = kyy − p hyy.

Thus, the general form of the second-order invariants (6) reduces to the dependence

J(h, p, hx, hy, kx, ky, hxy, kxy, r, s). (16)

The invariance conditions for functions of the form of (16) are given by

Xξ′(J) = 0, Xξ′′(J) = 0, Yη′(J) = 0, Yη′′(J) = 0, (17)

where the operators Xξ′ , Xξ′′ , Yη′ , and Yη′′ are written in the variables included in (16), namely:

Xξ′ = h
∂

∂h
+ 2hx

∂

∂hx
+ hy

∂

∂hy
+ 2kx

∂

∂kx
+ ky

∂

∂ky
+ 2hxy

∂

∂hxy
+ 2kxy

∂

∂kxy
+ 3r

∂

∂r
+ s

∂

∂s
,

Xξ′′ = h
∂

∂hx
+ ph

∂

∂kx
+ hy

∂

∂hxy
+ ky

∂

∂kxy
+ 3(kx − phx)

∂

∂r
,

(18)

Yη′ = h
∂

∂h
+ hx

∂

∂hx
+ 2hy

∂

∂hy
+ kx

∂

∂kx
+ 2ky

∂

∂ky
+ 2hxy

∂

∂hxy
+ 2kxy

∂

∂kxy
+ r

∂

∂r
+ 3s

∂

∂s
,

Yη′′ = h
∂

∂hy
+ ph

∂

∂ky
+ hx

∂

∂hxy
+ kx

∂

∂kxy
+ 3(ky − phy)

∂

∂s
.

The operators (18) satisfy the commutation relations

[Xξ′ , Xξ′′ ] = −Xξ′′ , [Xξ′ , Yη′ ] = 0, [Xξ′ , Yη′′ ] = 0,

[Xξ′′ , Yη′ ] = 0, [Xξ′′ , Yη′′ ] = 0, [Yη′ , Yη′′ ] = −Yη′′

and, hence, form a basis of the Lie algebra. The commutators given above show that it is convenient to solve
system (17) beginning with the following equations (see [5, Secs. 4.5.3]):

Xξ′′(J) = h
∂J

∂hx
+ ph

∂J

∂kx
+ hy

∂J

∂hxy
+ ky

∂J

∂kxy
+ 3(kx − phx)

∂J

∂r
= 0,

Yη′′(J) = h
∂J

∂hy
+ ph

∂J

∂ky
+ hx

∂J

∂hxy
+ kx

∂J

∂kxy
+ 3(ky − phy)

∂J

∂s
= 0.

(19)
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Integration of the characteristic system
dhx

h
=

dkx

ph
=

dhxy

hy
=

dkxy

ky
=

dr

3(kx − phx)

for the first equation (19) shows that the quantities h, p, hy, ky, and s can appear in J only in the following
combinations:

λ = kx − phx, τ = hhxy − hxhy, ν = phkxy − kxky, ω = hr − 3λhx.

Thus, the second equation of (19) reduces to the equation

Yη′′(J) = h
∂J

∂hy
+ ph

∂J

∂ky
+ 3(ky − phy)

∂J

∂s
= 0,

whose integration shows that the general solution of Eqs. (19) has the form J = J(h, p, λ, µ, τ, ν, ω, ρ), where

λ = kx − phx, µ = ky − phy, τ = hhxy − hxhy,

ν = phkxy − kxky, ω = hr − 3λhx, ρ = hs− 3µhy.
(20)

Solving the equation (Xξ′ − Yη′)(J) = 0 written in the variables h, p, λ, µ, τ , ν, ω, and ρ

(Xξ′ − Yη′)(J) = λ
∂J

∂λ
− µ

∂J

∂µ
+ 2ω

∂J

∂ω
− 2ρ

∂J

∂ρ
= 0,

we have J = J(h, p,m, τ, ν, n, N), where

m = λµ, n = ωρ, N = ω/λ2. (21)

To complete the integration of system (17), it is necessary to solve the equation

Xξ′(J) = h
∂J

∂h
+ 3τ

∂J

∂τ
+ 3ν

∂J

∂ν
+ 3m

∂J

∂m
+ 6n

∂J

∂n
= 0.

As a result, we obtain the following six independent invariants of the second order:

p =
k

h
, q =

τ

h3
, Q =

ν

h3
, N =

ω

λ2
, M =

n

h6
, I =

m

h3
(22)

provided that h 6= 0 and λ 6= 0. We note that each of the equations

λ ≡ kx − phx = 0, µ ≡ ky − phy = 0 (23)

is invariant. In our calculations, we omit the cases where Eqs. (23) and (14) are satisfied.
Let us now write invariants (22) in terms of the Laplace semi-invariants h and k and the Ovsyannikov

invariant p = k/h. From the equations

kx − phx ≡ (hkx − khx)/h = hpx, ky − phy ≡ (hky − khy)/h = hpy

we have

λ = kx − phx = hpx, µ = ky − phy = hpy,

r = kxx − phxx = hpxx + 2hxpx, ω = h2pxx − hhxpx, (24)

s = kyy − phyy = hpyy + 2hypy, ρ = h2pyy − hhypy.

From this it is easy to see that

q =
τ

h3
=

hxy

h2
− hxhy

h3
≡ 1

h

∂2 ln |h|
∂x ∂y

(25)

and Q = p3q̃. Here q̃ is an invariant (since p3 is an invariant) and has the form

q̃ =
1
k

∂2 ln |k|
∂x ∂y

. (26)

Next, we note that the invariant

M =
ω

h6
=

(px

h

)
x

(py

h

)
y
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can be replaced by another invariant, namely,

H = ρ/µ2 (27)

by using equalities (21)–(24) and the identity M = NHI2, which follows from the relation

NH =
ωρ

λ2µ2
=

ωρ

h4p2
xp2

y

=
ωρ

h6I2
.

Taking into account the definitions (20)–(22) and using Eqs. (24), we obtain

N =
ω

λ2
=

h(kxx − phxx)
(kx − phx)2

− 3hx

kx − phx
=

pxx

p2
x

− hx

hpx
=

1
px

(
ln

∣∣∣px

h

∣∣∣)
x
. (28)

Similarly, we rewrite invariant (27) as

H =
ρ

µ2
=

pyy

p2
y

− hy

hpy
=

1
py

(
ln

∣∣∣py

h

∣∣∣)
y
. (29)

As a result, we have

I =
λµ

h3
=

pxpy

h
· (30)

Collecting together invariants (15), (25), (26), and (28)–(30), we finally arrive at the following complete set
of second-order invariants for Eq. (1):

p =
k

h
, q =

1
h

∂2 ln |h|
∂x ∂y

, q̃ =
1
k

∂2 ln |k|
∂x ∂y

; (31)

N =
1
px

∂

∂x
ln

∣∣∣px

h

∣∣∣, H =
1
py

∂

∂y
ln

∣∣∣py

h

∣∣∣, I =
pxpy

h
. (32)

In addition, there are the following individually invariant equations (14) and (23):

h = 0, k = 0, kx − phx = 0, ky − phy = 0.

3. Invariant Differentiation. We now find invariant differentiations that transform each invariant of
Eq. (1) into the invariants of the same equation. Recall that for any group specified by means of the infinitesimal
operators

Xν = ξi
ν(x, u)

∂

∂xi
+ ηα

ν (x, u)
∂

∂uα

with n independent variables x = (x1, . . . , xn), there exist n invariant differentiations of the form (see [7, Sec. 7]
and also [5, Secs. 8.3.5])

D = f iDi. (33)

Their coefficients have the form f i = f i(x, u, u(1), u(2), . . .) and are found by solving the differential equations

Xν(f i) = f jDj(ξi
ν), i = 1, . . . , n. (34)

In our case, the operators Xν are (10) and (12). The invariant differentiation operator (33) can be written
as

D = f Dx + g Dy, (35)

and Eqs. (34) for the coefficients can be written as

X(f) = fDx(ξ(x)) + gDy(ξ(x)) ≡ −ξ′(x)f, X(g) = 0,
(36)

Y (g) = fDx(η(y)) + gDy(η(y)) ≡ −η′(y)g, Y (f) = 0.

Here f and g are unknown function x, y, h, k, hx, hy, kx, ky, hxx, . . . . It is implied that the operators X and Y

are extended to all derivatives of h and k being considered.
We begin with the case where f = f(x, y, h, k) and g = g(x, y, h, k). Then, Eqs. (36) give the following

system of equations for f :

ξ
∂f

∂x
− ξ′

[
h

∂f

∂h
+ k

∂f

∂k

]
= ξ′(x)f, η

∂f

∂y
− η′

[
h

∂f

∂h
+ k

∂f

∂k

]
= 0.
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As in Sec. 2, using the fact that ξ, ξ′, η, and η′ are arbitrary functions, we arrive at the following four equations:
∂f

∂x
= 0, h

∂f

∂h
+ k

∂f

∂k
= −f,

∂f

∂y
= 0, h

∂f

∂h
+ k

∂f

∂k
= 0,

whence it immediately follows that f = 0. Similarly, Eqs. (36), written for g = g(x, y, h, k), give g = 0. This means
that there are no invariant differentiations of (35) with the coefficients f = f(x, y, h, k) and g = g(x, y, h, k).

Therefore, we continue the search by setting

f = f(x, y, h, k, hx, hy, kx, ky), g = g(x, y, h, k, hx, hy, kx, ky).

The extended operators X and Y leads to the following operators [compare (11) and (13)]

Xξ =
∂

∂x
, Xξ′′ = h

∂

∂hx
+ k

∂

∂kx
,

Xξ′ = h
∂

∂h
+ k

∂

∂k
+ 2hx

∂

∂hx
+ hy

∂

∂hy
+ 2kx

∂

∂kx
+ ky

∂

∂ky

(37)

and, hence, to the operators

Yη =
∂

∂y
, Yη′′ = h

∂

∂hy
+ k

∂

∂ky
,

Yη′ = h
∂

∂h
+ k

∂

∂k
+ hx

∂

∂hx
+ 2hy

∂

∂hy
+ kx

∂

∂kx
+ 2ky

∂

∂ky
.

(38)

The existence of the operators Xξ and Xη leads to the fact that f and g do not depend on x and y. Next, Eqs. (36)
split into the equations

Xξ′(f) = −f, Xξ′′(f) = 0, Yη′(f) = 0, Yη′′(f) = 0 (39)

for the function f(h, k, hx, hy, kx, ky) and the equations

Xξ′(g) = 0, Xξ′′(g) = 0, Yη′(g) = −g, Yη′′(g) = 0 (40)

for the function g(h, k, hx, hy, kx, ky). Of them, the pair of equations Xξ′′(f) = 0 and Yη′′(f) = 0 for f and the
pair of equations Xξ′′(g) = 0 and Yη′′(g) = 0 for g show that f and g depend only on the following four variables
(compare Sec. 2):

h, k, λ = kx − phx = hpx, µ = ky − phy = hpy.

We now rewrite the operators Xξ′ and Yη′ in the variables h, λ, µ, and p = k/h:

Xξ′ = h
∂

∂h
+ 2λ

∂

∂λ
+ µ

∂

∂µ
, Yη′ = h

∂

∂h
+ λ

∂

∂λ
+ 2µ

∂

∂µ
(41)

and integrate the equations

Xξ′(f) = −f, Yη′(f) = 0

for the function f(h, p, λ, µ) and similar equations

Xξ′(g) = 0, Yη′(g) = −g

for g(h, p, λ, µ). As a result, we obtain

f =
h

λ
F (p, I), g =

h

µ
G(p, I), (42)

where λ = hpx, µ = hpy, and p and I are invariants of (15) and (30):

p =
k

h
, I =

λµ

h3
=

pxpy

h
.

Substitution of expressions (42) into (35) leads to the invariant-differentiation operator

D = F (p, I)
1
px

Dx + G(p, I)
1
py

Dy (43)

with arbitrary functions F (p, I) and G(p, I).
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Remark 1. The most general invariant differentiation has the form of (43) with F (p, I) and G(p, I) replaced
by arbitrary functions of higher-order invariants [or example, by F (p, I, q, q̃, N,H) and G(p, I, q, q̃, N,H)] if the
corresponding invariants are found. This, however, is not needed; it only suffices to set F = const and G = const.

Setting F = 1 and G = 0 and then F = 0 and G = 1 in (43), we obtain the following simple invariant
differentiations in the x and y directions:

Dx =
1
px

Dx, Dy =
1
py

Dy. (44)

It is now possible to construct higher-order invariants using the invariant differentiations (44) and to prove
the following statement.

Theorem 1. The basis of invariants of arbitrary order for Eq. (1) consists of the invariants

p =
k

h
, I =

px py

h
, q =

1
h

∂2 ln |h|
∂x ∂y

, q̃ =
1
k

∂2 ln |k|
∂x ∂y

(45)

or the alternative basis invariants

p =
k

h
, I =

pxpy

h
, N =

1
px

∂

∂x
ln

∣∣∣px

h

∣∣∣, q =
1
h

∂2 ln |h|
∂x ∂y

. (46)

Proof. Simple calculations lead to the relations

Dx(p) = 1, Dx(I) = (N + 1/p)I + p(pq̃ − q),

Dy(p) = 1, Dy(I) = (H + 1/p)I + p(pq̃ − q).

They show that invariants (46) can be obtained from (45) using invariant differentiations and vice versa. Hence,
as the basis of all second-order invariants (31), (32), it is possible to choose either (45) or (46). Next, using
Eqs. (24), one can show that the invariant differentiations Dx and Dy of the basis invariants (45) or (46) yield
six independent invariants which depend on the third-order partial derivatives of h and k. At the same time, the
consideration of the third-order invariants involves accounting for eight third-order derivatives of h and k. However,
the number of invariance conditions taking into account the fourth derivatives ξ(iv)(x) and η(iv)(y) increases by
two equations, so that, eventually, only six additional invariants remain — just as many invariants as obtained by
invariant differentiations. The same reasoning in the case of derivatives of any order completes the proof of the
theorem.
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